

Welcome to the fpm-cookery documentation!

Current version: 0.33.0

fpm-cookery provides an infrastructure to automatically build software based on recipes. It’s heavily inspired and borrows code from the great homebrew [https://github.com/mxcl/homebrew] and brew2deb [https://github.com/tmm1/brew2deb] projects.

Features

	Source archive download and caching.

	Recipes to describe and execute the software build. (e.g. configure, make, make install)

	Sandboxed builds.

	Package creation via fpm [https://github.com/jordansissel/fpm].

	Standalone recipe trees/books/you name it. No need to put the recipes into the fpm-cookery source tree.

Documentation Contents

	Getting Started
	Prerequisites

	Installation

	The Recipe

	Example Workflow

	Using Hiera
	Configuring Hiera

	Hiera in Recipes

	Examples

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

This page helps you to get started with the fpm-cookery tool and guides you
through the installation and the creation of a simple recipe to build your
first package.

You will create a package for the tmux [http://tmux.sourceforge.net/] program.

Prerequisites

The following instructions have been tested with an Ubuntu 12.04 Linux system.
It might work on other versions or other Linux systems but that cannot be
guaranteed. Please use something like Vagrant [http://www.vagrantup.com/] to
create an Ubuntu 12.04 VM if you do not have one at hand.

Installation

Rubygems

fpm-cookery is written in Ruby. Before we can actually install the rubygem, you
have to install a Ruby interpreter and some build tools.
Execute the following to install the required packages:

$ sudo apt-get install ruby1.9.1 ruby1.9.1-dev build-essential curl

Ruby 1.9 includes the gem program to install rubygems:

$ sudo gem install fpm-cookery

This installs the fpm-cookery rubygem and its dependencies. At the end you
should see something like “Successfully installed fpm-cookery-0.33.0”.

Your fpm-cookery installation is ready to build some packages now!

OS Package

We are planning to provide a packaged version for different operating systems.
Please use the Rubygems installation method above in the meantime.

The Recipe

The recipe is a Ruby file that contains a simple class which acts as a DSL
to set the attributes of a package (like name and version) and to describe
the build and installation process of a package.

You might want to create some folders to organize your recipes:

$ mkdir recipes
$ mkdir recipes/tmux
$ cd recipes/tmux
$ touch recipe.rb

The last command creates an empty recipe file. See the following snippet for
the complete recipe to build a tmux package. We will go through each step
afterwards. Use your text editor to add the code to the recipe.rb file.

class Tmux < FPM::Cookery::Recipe
 description 'terminal multiplexer'

 name 'tmux'
 version '1.9a'
 homepage 'http://tmux.sourceforce.net/'
 source 'http://freefr.dl.sourceforge.net/project/tmux/tmux/tmux-1.9/tmux-1.9a.tar.gz'

 build_depends 'libevent-dev', 'libncurses5-dev'
 depends 'libevent-2.0-5'

 def build
 configure :prefix => prefix
 make
 end

 def install
 make :install, 'DESTDIR' => destdir
 end
end

Example Workflow

The following commands require the recipe.rb recipe file created above.

$ fpm-cook
===> Starting package creation for tmux-1.9a (ubuntu, deb)
===>
===> Verifying build_depends and depends with Puppet
===> Verifying package: libevent-dev
===> Verifying package: libevent-2.0-5
===> Missing/wrong version packages: libevent-dev
ERROR: Not running as root; please run 'sudo fpm-cook install-deps' to install dependencies.

$ sudo fpm-cook install-deps
===> Verifying build_depends and depends with Puppet
===> Verifying package: libevent-dev
===> Verifying package: libevent-2.0-5
===> Missing/wrong version packages: libevent-dev
===> Running as root; installing missing/wrong version build_depends and depends with Puppet
===> Installing package: libevent-dev
===> ensure changed 'purged' to 'present'
===> All dependencies installed!

$ fpm-cook
===> Starting package creation for tmux-1.9a (ubuntu, deb)
===>
===> Verifying build_depends and depends with Puppet
===> Verifying package: libevent-dev
===> Verifying package: libncurses5-dev
===> Verifying package: libevent-2.0-5
===> All build_depends and depends packages installed
===> Fetching source:
100.0%
===> Building in /home/vagrant/recipes/tmux/tmp-build/tmux-1.9a
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes

[lots of output removed]

make[1]: Nothing to be done for `install-data-am'.
make[1]: Leaving directory `/home/vagrant/recipes/tmux/tmp-build/tmux-1.9a'
===> [FPM] Converting dir to deb {}
===> [FPM] No deb_installed_size set, calculating now. {}
===> [FPM] Reading template {"path":"/var/lib/gems/1.9.1/gems/fpm-1.0.2/templates/deb.erb"}
===> [FPM] Creating {"path":"/tmp/package-deb-build20140308-7998-1v6uqm5/control.tar.gz","from":"/tmp/package-deb-build20140308-7998-1v6uqm5/control"}
===> [FPM] Created deb package {"path":"tmux_1.9a-1_amd64.deb"}
===> Created package: /home/vagrant/recipes/tmux/pkg/tmux_1.9a-1_amd64.deb

.
|-- cache
| `-- tmux-1.9a.tar.gz
|-- pkg
| `-- tmux_1.9a-1_amd64.deb
|-- recipe.rb
|-- tmp-build
| `-- tmux-1.9a
`-- tmp-dest
 `-- usr

$ dpkg -c pkg/tmux_1.9a-1_amd64.deb
drwxrwxr-x 0/0 0 2014-03-08 01:26 ./
drwxrwxr-x 0/0 0 2014-03-08 01:26 ./usr/
drwxrwxr-x 0/0 0 2014-03-08 01:26 ./usr/share/
drwxrwxr-x 0/0 0 2014-03-08 01:26 ./usr/share/man/
drwxrwxr-x 0/0 0 2014-03-08 01:26 ./usr/share/man/man1/
-rw-r--r-- 0/0 93888 2014-03-08 01:26 ./usr/share/man/man1/tmux.1
drwxrwxr-x 0/0 0 2014-03-08 01:26 ./usr/bin/
-rwxr-xr-x 0/0 491016 2014-03-08 01:26 ./usr/bin/tmux

$ dpkg -I pkg/tmux_1.9a-1_amd64.deb
 new debian package, version 2.0.
 size 235488 bytes: control archive= 437 bytes.
 260 bytes, 12 lines control
 105 bytes, 2 lines md5sums
 Package: tmux
 Version: 1.9a-1
 License: unknown
 Vendor:
 Architecture: amd64
 Maintainer: <vagrant@ubuntu1204>
 Installed-Size: 571
 Depends: libevent-2.0-5
 Section: optional
 Priority: extra
 Homepage: http://tmux.sourceforce.net/
 Description: terminal multiplexer

Using Hiera

Hiera [http://docs.puppetlabs.com/hiera] is a hierarchical key-value lookup
tool from Puppet Labs that, integrated with fpm-cookery, allows you to improve
your package builds by:

	Separating data from build logic,

	Selectively overriding particular recipe attributes for different platforms,
software versions, etc., and

	Staying DRY by reusing data via the hiera and scope
interpolation methods.

Configuring Hiera

Controlling the Lookup Hierarchy

By default, FPM-Cookery looks for Hiera data files under the config
subdirectory of the directory containing the target recipe. You can override
this through the --data-dir option to fpm-cook. You can also set the
data file directory via the datadir= class method while defining the recipe
class:

class FreshRecipe < FPM::Cookery::Recipe
 datadir = "/somewhere/other/than/#{File.dirname(__FILE__)}/config"
end

Note

Part of the recipe initialization process involves automatically
applying data contained in the
files in the current datadir. If you change datadir after the
initialize method completes, you must call the apply method
manually to reconfigure the recipe according to the files in the the new
datadir.

When retrieving recipe data, fpm-cookery observes the following hierarchy of
files under datadir, ordered from highest to lowest precedence:

	Path

	Description

	"#{recipe.platform}.yaml",
"#{recipe.platform}.json"

	The platform for which the recipe is being
built. Corresponds to Facter’s
operatingsystem fact, except that all
characters are lowercase. For instance, if
operatingsystem is ArchLinux,
recipe.platform will be archlinux.

	"#{recipe.target}.yaml",
"#{recipe.target}.json"

	The target package type. Options span all
package types that FPM can build,
including include rpm, apk,
deb, osxpkg, and others.

	"common.yaml",
"common.json"

	Intended for configuration data that is
common to all builds.

You can further influence the lookup hierarchy by setting the environment
variable FPM_HIERARCHY. The value should be string containing a
colon-separated list of filename stems. For example:

$ FPM_HIERARCHY=centos:rhel:el fpm-cook package

prepends centos, rhel, and el to the search hierarchy, causing
fpm-cookery to attempt load data from centos.yaml, rhel.yaml,
el.yaml, and their .json counterparts. The final hierarchy is:

	"centos.yaml"

	"rhel.yaml"

	"el.yaml"

	"#{recipe.platform}.yaml"

	"#{recipe.target}.yaml"

	"common.yaml"

Other Settings

You can exercise more fine-grained control by providing the path to a Hiera
configuration file via the --hiera-config option. See the Hiera docs [http://docs.puppetlabs.com/hiera/3.0/configuring.html] for available
configuration file options.

Hiera in Recipes

Lookups

fpm-cookery provides the lookup class method on all classes that inherit
from FPM::Cookery::Recipe, as well as an instance method of the same name.
lookup takes one mandatory argument: a key to be looked up in the Hiera
data files. If Hiera locates the key, lookup returns the corresponding
value; otherwise lookup returns nil.

Writing Data Files

See the Hiera data sources documentation [http://docs.puppetlabs.com/hiera/3.0/data_sources.html]
for an overview of Hiera data sources.

Note

Please ensure that your data files use the extensions .yaml or
.json, as appropriate – Hiera ignores files with any other
extension.

You’ll probably find data files most useful for defining recipe attributes.
However, key-value mappings in Hiera data sources need not correspond to recipe
attributes – you can store any data you like as long as it is valid YAML or
JSON:

name: custom-package
version: '2.1.6'
some_arbitrary_data:
 - thing one
 - thing two
 - thing: three
 is_a: hash

(later on…)

CustomPackageRecipe.lookup('some_arbitrary_data')
 #=> ['thing one', 'thing two', {'thing' => 'three', 'is_a' => 'hash'}]

Interpolation in Data Files

Within a data file, the %{scope("...")} method interpolates values from the
following sources:

	The current recipe class

	FPM::Cookery::Facts

	Facter [https://puppetlabs.com/facter] facts

The %{hiera("...")} method interpolates values looked up in the data files
themselves.

Say you are on an x86_64 system, and consider the following YAML data:

name: something-clever
version: '0.9.0'
source: 'https://www.sporkforge.net/archive/%{scope("arch")}/%{hiera("name")}-%{hiera("version")}.tar.gz'

source evaluates like so:

SomethingCleverRecipe.lookup('source')
 #=> 'https://www.sporkforge.net/archive/x86_64/something-clever-0.9.0.tar.gz'

Symbolized Hash Keys

Ruby’s YAML library automatically converts hash keys prefixed with colons into
symbols. This is good to know when using Hiera to store data relevant to
methods that expect symbols in their arguments – for instance, source.

BAD:

source:
 - 'git://gogs.myhostname.info/labyrinthm/bowie.git'
 - with: git
 tag: 'v1.1.3'

GOOD:

source:
 - 'git://gogs.myhostname.info/labyrinthm/bowie.git'
 - :with: git
 :tag: 'v1.1.3'

Method Signatures and Unpacking Data Structures

fpm-cookery tries to Do What You Mean when dealing when loading data from
Hiera, but there are some subtleties relating to method signatures that you
should be aware of.

Methods that expect a single argument are the simplest case – just provide a
single key-value pair:

name: 'myrecipe'

Methods that expect multiple arguments should be given as a list:

depends:
 - openssl-devel
 - docker-compose

fpm-cookery will automatically unpack the argument list with Ruby’s splat
(*) operator when invoking the method.

Methods that expect a hash should be given as a series of key-value pairs:

environment:
 LC_ALL: C
 SHELLOPTS: xtrace
 PAGER: cat

fpm-cookery will merge these pairs into whatever data is already assigned as
the value of the attribute, rather than replacing it.

Some methods expect a heterogeneous list of arguments, source being the
most important of these. If you want to pass options to source or other
such methods, use the following technique:

source:
 - 'https://my.subversion-server.net/trunk'
 - :revision: 92834
 :externals: false

This translates to a Ruby Array:

['https://my.subversion-server.net/trunk', {:revision => 92834, :externals => false}]

For simple sources that consist only of a URL, you can do:

source: 'git://our.internal-git.com/foo/bar.git'

Automatic Application of Hiera Data

As part of the recipe initialization process, fpm-cookery calls lookup to
retrieve any Hiera-defined values corresponding to recipe attribute names such
as name, version, and source. If Hiera can locate the key,
fpm-cookery automatically sets the relevant attribute to the retrieved value.

Attributes defined in Hiera data files take precedence over
attributes defined in recipe.rb:

--- # common.yaml
source: https://www.repourl.org/source/neato-0.2.4-7.tar.bz2

recipe.rb
class NeatoRecipe < FPM::Cookery::Recipe
 source 'https://www.repourl.org/source/nightly/neato-nightly.tar.gz'
end

This results in:

NeatoRecipe.source #=> https://www.repourl.org/source/neato-0.2.4-7.tar.bz2

Examples

See the Redis recipe [https://github.com/bernd/fpm-cookery/tree/master/recipes/redis] for an
example of fpm-cookery and Hiera in action.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to the fpm-cookery documentation!

 		
 Getting Started

 		
 Prerequisites

 		
 Installation

 		
 Rubygems

 		
 OS Package

 		
 The Recipe

 		
 Example Workflow

 		
 Using Hiera

 		
 Configuring Hiera

 		
 Controlling the Lookup Hierarchy

 		
 Other Settings

 		
 Hiera in Recipes

 		
 Lookups

 		
 Writing Data Files

 		
 Method Signatures and Unpacking Data Structures

 		
 Automatic Application of Hiera Data

 		
 Examples

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

